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Abstract: We have studied the linear codes associated: a) with the surfaces
V r−1

2 of order r − 1 of PG(r, q), analyzing in detail the case r = 4; b) with the
Schubert subvarieties of the Grassmannian varieties.

1 Introduction

The purpose of this paper is to read classical varieties as linear codes, adopt-
ing a geometric point of view. It was introduced first by Goppa with his
AG-codes, while studying a generalization of RS-codes and BCH-codes and
classical Goppa-codes. Many authors (among them Hirschfeld, van Lint, van
der Geer, Tsfasman, Vladut, Nogin) followed the initial study by Goppa.
The main goal is to build codes by considering the projective systems arising
from the rational points of a variety.

In this work we first study the code C associated to a variety V r−1
2 of

the r-dimensional projective geometry PG(r, q). The [n, k]q-code C has as
basic parameters n = (q + 1)2, k = r + 1, and distances d1 = q2 + (1 − m)q
(where m is the order of the minimum directrix of V r−1

2 ), dr−1 = q2 + q. We
analyze then our case r = 4. After having shown some geometric properties
of a V 3

2 with respect to the intersection with hyperplanes, planes and lines,
the weigths distribution of the associated code C is found.

In the last part, with the contribution of L. Guerra, we describe the
linear codes associated to the Schubert varieties. In the projective space
Pm consider a flag of subspaces A0 ⊂ · · · ⊂ Ad of increasing dimensions
a0 < · · · < ad with ai ≥ i. Inside the Grassmann variety G(d,m) is the
Schubert subvariety Ω, whose points correspond to the d-subspaces L such
that dim L ∩ Ai ≥ i for all i. In [3] Ghorpade and Lachaud proved that if
d(Ω) denotes the dimension of Ω then the minimum distance satisfies d1 ≤
qd(Ω), and they also conjectured that the equality holds. Here the conjecture
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is checked for the unique non-trivial Schubert variety in the Klein quadric
G(1, 3), which is for (a0, a1) = (1, 3). Moreover we provide a formula for the
number of the points of a Schubert variety, and we obtain a lower bound for
the minimum distance d1.

Finally we mention that in a recent preprint by Ghorpade and Tsfasman
[?] more results may be found on the basic parameters of the Schubert codes,
together with an updated overview of the research on the present subject.

2 Codes and projective systems

Let F = GF (q) be a finite field, q = ps, p prime, denote by F n the n-dim-
ensional vector space over F .

We begin by briefly recalling some basic definitions.
A linear [n, k]q-code C is a k-dimensional subspace of F n. The dual

code of C is the (n−k)-dimensional subspace C⊥ of F n and it is an [n, n−k]q-
code.

For t ≥ 1 the t-th higher weight of C (see Wei [13]) is defined by

dt = dt(C) = min{‖D‖ for all D < C, dim D = t},

where ‖D‖ is the number of indices i such that there exists v ∈ D with
vi 6= 0. Note that d1 = d1(C) is the classical minimum distance of C, the
Hamming distance.

The code C (or, C⊥) is of genus at most g ≥ 0 if the following inequal-
ities hold:

k + d1 ≥ n + 1− g and (n− k) + d⊥1 ≥ n + 1− g

where d⊥1 is the distance of C⊥. C is an MDS-code when g = 0 (see [10]).
Let P k−1 = PrF k denote the (k− 1)-dimensional Galois projective space

PG(k − 1, q) over the field F . An [n, k]q-projective system X of P k−1 is
a collection of n not necessarily distinct points. It is called non-degenerate if
these n points are not contained in any hyperplane.

Assume that X consists of n distinct points having rank k. For each point
of X choose a generating vector. Denote by M the matrix having as rows such
n vectors and let C be the linear code having M t as a generator matrix. The
code C is the k-dimensional subspace of F n which is the image of the mapping
from the dual k-dimensional space (F k)∗ onto F n that calculates every linear
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form over the points of X . Hence the length n of codeword of C is the
cardinality of X , the dimension of C being just k. There exists a natural 1–1
correspondence between the equivalence classes of a non-degenerate [n, k]q-
projective system X and a non-degenerate [n, k]q-code C such that if X is
an [n, k]q-projective system and C is the corresponding code, then the non-
zero codewords of C correspond to hyperplanes of P k−1, up to a non-zero
factor, the correspondence preserving the parameters n, k, dt. More generally,
subcodes D of C of dimension r correspond to (projective) subspaces of
codimension r of P k−1. Consequently, the higher weights of C are given by
dt = dt(C) = n − max{|X ∩ S| : S < P k−1, codim S = t}. In particular,
d1 = d1(C) = n−max{|X ∩H| : H < P k−1, codim H = 1}.

The spectrum of a projective system X of P k−1 (or of the corresponding

linear code C) is defined by the numbers A
(s)
i = |{S < P k−1 : codim S =

s, |S ∩ X | = n− i}| for all i = 1, 2, ..., n, s = 1, 2, ..., k − 2.
For the above definitions see [10] and [3]. The following theorem holds

(see [10]):

Theorem 1 A (non-degenerate) projective system of P k (or, of the corre-
sponding code with d1 ≥ 1) satisfies the following bounds:

1 ≤ d1 ≤ d2 ≤ · · · ≤ dk = n;

for t ≤ s ≤ k, dt ≥ n− b(qk−t − 1)(n− ds)/q
k−sc;

Singleton-type bound: t ≤ dt ≤ n− k + t;

Plotkin-type bound: dt ≤ bn(qt − 1)qk−t/(qk − 1)c;

Griesmer bound: n ≥ ∑
idd1/q

ie, i = 0, . . . , k − 1;

Griesmer-type bound: dt ≥
∑

idd1/q
ie, i = 0, . . . , t− 1.

Codes can be built from classical algebraic varieties by considering pro-
jective systems arising from their rational points.

For instance, affine and projective spaces can be considered as Reed–
Muller codes. We like to recall codes from quadrics (Wan), Hermitian va-
rieties (Hirschfeld, Tsfasman, Vladut), Del Pezzo surfaces (Boguslawski),
Grassmannians (Ryan, Nogin, Ghorpade, Lachaud), without mentioning the
many other authors who studied algebraic curves from the codes point of
view.
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3 The ruled surfaces of order r− 1 of PG(r, q)

and their codes

Let P r = PG(r, q) be the r-dimensional projective geometry over F =
GF (q). If we denote by F the algebraic closure of F , we can consider P r as
a subgeometry of the geometry P

r
of the same dimension over F .

A variety V v
u of dimension u and of order v of P r is the set of the

rational points of a projective variety V
v

u of P
r

defined by a finite set of
polynomials of F [x0, . . . , xr].

The following results are well known (see [2]), they can be easily proved
also for the finite case, suitably modified.

Theorem 2 The varieties V r−1
2 of P r are the rational ruled varieties and

the Veronese surface if r = 5.

Assume r 6= 5. Denote by St a projective t-dimensional subspace of P r

for t < r.

Theorem 3 (i) V r−1
2 is a ruled rational normal surface.

(ii) Every irreducible curve Ct of order t ≤ r − 1 of V r−1
2 is a rational

normal curve and it does exist in an St.

(iii) V r−1
2 can be built by a projectivity between two irreducible directrix

curves Cm ⊂ Sm and Cr−m−1 ⊂ Sr−m−1.

(iv) If the minimum order directrix of V r−1
2 is of order m, then h generatrix

lines are dependent or independent according to h ≤ m+1 or h > m+1,
respectively.

(v) If r is even, there exists exactly one directrix curve of order m = (r −
2)/2; if r is odd, there exist directrix curves of order m ≤ (r − 1)/2.

Let us consider a surface V r−1
2 . Assume that V r−1

2 contains a minimum
order directrix Cm where m < q.

Denote by X the projective system consisting of the rational points of
V r−1

2 . It is |X | = (q + 1)2. Let C be the linear code associated to X .

Theorem 4 C is an [n, k]q-code with

n = (q + 1)2, k = r + 1, d1 = q2 −mq, dr−1 = q2 + q.
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Proof. From the previous arguments it follows that n = (q + 1)2 and
k = r + 1. To evaluate dr−1 simply note that V r−1

2 contains lines, therefore
dr−1 = q2 +2q+1−(q+1) = q2 +q. From Theorem 3,(iv)) it follows that the
hyperplanes H that give rise to the (minimum) distance d1, contain the sub-
space Sm ⊃ Cm and m+1 generatrix lines. Then |H∩V r−1

2 | = (m+2)q+1 and
therefore d1 = q2 +2q+1−((m+2)q+1) = q2−mq. To evaluate dr−1 simply
note that V r−1

2 contains lines, therefore dr−1 = q2+2q+1−(q+1) = q2+q. ?

Lemma 5 The inequality (m + 2)q ≥ r − 1 holds for every q and r.

Proof. The inequality follows from d1 ≤ n− k + 1 . ?

Theorem 6 C and C⊥ are of genus at most g ≥ (m + 2)q − (r − 1).

Proof. It follows from the definition of genus of a code, Theorem 4 and
Lemma 5. ?

Consider now the case r = 4. Let V 3
2 be a ruled surface of P 4 = PG(4, q).

Lemma 7 (a) The variety V 3
2 has a line l as a minimum order directrix,

projecting a non-degenerate conic C of a plane π skew to l.

(b) V 3
2 consists of q + 1 generatrix lines, skew to each other, birationally

connecting the points of l and C.

(c) There exists only one hyperplane H containing l and such that the line
π ∩H is skew to l.

(d) There exist hyperplanes H ′ containing one generatrix g1 and such that
l 6⊂ H ′ for which H ′ ∩ V 3

2 = {g1, C
2} for some conic C2.

(e) There exist hyperplanes H ′ containing two generatrices g1, g2 for which
H ′∩V 3

2 = {g1, g2, l}, such hyperplanes having the maximum intersection
with V 3

2 .

(f) There are no hyperplanes containing 3 generatrices.
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(g) If P, Q are points of V 3
2 then either P, Q belong tothe minimum order

directrix l, or to a generatrix g1, or they are points of a unique conic
C2 of V 3

2 .

(h) There exist planes π′ intersecting V 3
2 either in one point, or in one line,

or in one irreducible conic, or in two intersecting lines (namely, l and
a generatrix g1). The last planes are tangent and have the maximum
cardinality intersection with V 3

2 .

(i) The varieties V 3
2 of P 4 having l and C as directrices are projectively

equivalent and their number is (q + 1)q(q − 1).

Proof. See Theorem 3, [12, Proposition 1.1, Lemma 1.2, Theorems 1.2, 1.3],
and [1, Propositions 1.1, 1.3, 1.4, 1.5]. ?

As above, denote by X the projective system consisting of the rational
points of V and by C the linear code associated to it.

Theorem 8 C is an [n, k]q-code with n = (q + 1)2, k = 5, d1 = q2 − q,
d2 = q2, d3 = q2 + q. C (and C⊥) is of positive genus g ≥ 3q − 3.

Proof. From Theorem 4 follow immediately the expressions of d1 and d3.
Remark that from Lemma 7, (h)the planes that contribute to evaluate d2 are
those containing the minimum order directrix l and a generatrix g1, therefore
d2 = q2 + 2q + 1− (2q + 1) = q2.

From Theorem 6 and Lemma 7, (a) it follows that g ≥ 3q − 3. ?

Theorem 9 The spectrum A
(1)
i of X is

A
(1)
d1

= (q + 1)q/2, A
(1)
d2

= (q2 − q)(q + 1), A
(1)
d3

= (q4 + 1) + q(q + 3)/2,

A
(1)
i = 0 for all i ∈ {1, 2, ..., n} \ {d1, d2, d3}.

Proof. From Lemma 7 it follows |H ∩ V 3
2 | ∈ {q + 1, 2q + 1, 3q + 1} for all

hyperplanes H, so that from the definition of spectrum we get

A
(1)
i = 0 for all i ∈ {1, 2, ..., n} \ {d1, d2, d3}.
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Remark that A
(1)
d1

equals the number a of the hyperplanes containing two
skew lines of the q + 1 generatrices of V 3

2 (and then also the minimum order

directrix l) and that A
(1)
d2

equals the number b of the hyperplanes containing
one generatrix (and also a conic, from Lemma 7, (d)) of V 3

2 . We get first

A
(1)
d1

= a = (q + 1)!/2(q − 1)! = (q + 1)q/2.

To compute A
(1)
d2

remark that the number of all the hyperplanes through
the q + 1 generatrices of V 3

2 is (q2 + q + 1)(q + 1) = 2a + b. Therefore

b = (q2 − q)(q + 1) = A
(1)
d2

.

A
(1)
d3

is simply the number of the remaining hyperplanes, that is,

A
(1)
d3

= q4 + q3 + q2 + q + 1− (a + b) = (q4 + 1) + q(q + 3)/2. ?

4 Codes from Schubert varieties

The Grassmann codes have been studied in a number of papers [?], [?], [?],
[?], and their basic parameters are known. Denote by V = Fm+1 the (m+1)-
dimensional vector space over the field F = GF (q). For the grassmannian
G(d,m) of d-dimensional subspaces in Pm = PG(m, q) = PrV the associated

code has length n =:
[

m + 1
d + 1

]
(that is, the Gaussian binomial coefficient),

dimension k =
(

m + 1
d + 1

)
and weights d1 = q(m−d)(d+1), dt = d1(q

t − 1)/(qt −
qt−1) for t > 1.

In the projective space Pm consider a flag of subspaces A0 ⊂ A1 ⊂
· · · ⊂ Ad of increasing dimensions a0 < a1 < · · · < ad so that ai ≥ i.
Inside the Grassmann variety G(d,m) is the Schubert subvariety Ω(a) =
Ω(a0, a1, . . . , ad), that is the set of the points corresponding to the d-subspaces
L such that dim L ∩Ai ≥ i for all i. It is irreducible of dimension a0 + a1 +
· · ·+ad− 1

2
d(d+1). The dimension k(a) = k(a0, a1, . . . , ad) of the associated

code C(Ω(a)) is known to coincide with the number of increasing sequences
b0 < b1 < · · · < bd such that bi ≤ ai, cf. [?]. We are going to approach the
lenght and the minimum weight.

Example 10 In the Klein quadric G(1, 3) the only nontrivial Schubert sub-
variety is for (a0, a1) = (1, 3). It is the variety of lines meeting a given line,
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the special linear complex of lines. A direct computation gives the parameters
n = q(q + 1)2 + 1 and k = 5 and weights

d1 = q3, d2 = q3 + q2, d3 = q3 + 2q2.

The weights may be computed using the quadratic equation x0x5 − x1x4 +
x2x3 = 0 of the Grassmannian in P 5, and cutting out the Schubert variety
by means of the hyperplane P 4 : x5 = 0. The section is a cone with vertex
(1, 0, 0, 0, 0) over the hyperbolic quadric x1x4−x2x3 = 0 in P 3. In particular
the cone is filled with q + 1 planes, obtained from the lines of a ruling of
the quadric, two of which only meet at the vertex. In order to compute d1

we want the maximum intersection with hyperplanes in P 4. It is easy to see
that this is obtained if the hyperplane contains one of the planes, and meets
each of the remaining q planes in a line, which goes through the vertex. Then
for d2 we want the maximum intersection with 2-subspaces in P 4, and this
is obtained if the subspace is one of the ruling planes, or is a plane through
the vertex which meets every ruling plane in a line. Finally d3 is clear.

The number of points

Denote by n(a) = n(a0, a1, . . . , ad) the number of points of the Schubert
variety Ω(a) of Pm which gives the length of the associated Schubert code
C(Ω(a)). We present an effective formula for this number of points.

The formula requires the function η(r, s, t) which gives, in a vector space
of dimension s, the number of r-subspaces L such that L ∩ A = 0, where A
is a given t-subspace. It is well known that

η(r, s, t) =

[
s− t

r

]
qtr.

For a given sequence of dimensions l0 ≤ . . . ≤ ld such that ai ≥ li ≥ i
and ld = d, define n(a, l) = n(a0, . . . , ad, l0, . . . , ld) to be the number of
d-dimensional subspaces L such that dim L ∩ Ai = li.

Proposition 11 The number of points of Ω(a) is given by

n(a) =
∑

l

n(a, l),

where
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n(a, l) =
d∏

i=0

η(ri, si, ti),

ri = li − li−1, si = ai − li−1, ti = ai−1 − li−1,

where for i = 0 we mean that η(r0, s0, t0) :=

[
a0 + 1
l0 + 1

]
, which also is a

special case of the formula for η if we agree that a−1 = l−1 = −1.

Proof. The first formula is quite clear. For the second formula we observe
that there is a one to one correspondence between subspaces L of Pm such
that dim L ∩ Ai = li and chains of subspaces L0 ⊂ L1 ⊂ · · · ⊂ Ld with
Li ⊂ Ai and dim Li = li and such that Li ∩ Ai−1 = Li−1. Then there is a
flag of vector subspaces A′

0 ⊂ A′
1 ⊂ · · · ⊂ A′

d and each Li in the chain above
is projectivized of a vector subspace L′

i ⊂ V . We therefore assume that the
chain has been constructed up to Li−1. Then the number of possible choices
for Li is the number of subspaces L′

i/L
′
i−1 in A′

i/L
′
i−1 having zero intersection

with A′
i−1/L

′
i−1. ?

The minimum weight, a lower bound

The grassmannian G(d,m) of the d-subspaces of P = Pr V is embedded
into Pr∧d+1V . If L ⊂ P is projectivized of L′ ⊂ V then the decomposable
(d + 1)-vector e0 ∧ e1 ∧ · · · ∧ ed obtained from a basis of L′ is determined up
to proportionality. Every hyperplane is defined as (e0 ∧ e1 ∧ · · · ∧ ed)∧ω = 0
for some nonzero (m − d)-vector ω ∈ ∧m−dV , and ω is a word in the code
associated to the grassmannian G(d,m).

The Schubert variety Ω(a) is contained into hyperplanes Hω for values
of ω which make up a linear subspace L(a) ⊂ ∧m−dV . The linear closure of
Ω(a) is projectivized of the linear subspace of ∧d+1V annihilated by L(a), so
every hyperplane in the linear closure is traced by Hω for some ω ∈ ∧m−dV
such that ω 6∈ L(a), and the equivalence class [ω] ∈ ∧m−dV/L(a) is a word
of the Schubert code C(Ω(a)).

We denote by n(a0, a1, . . . , ad, ω) the number of subspaces which satisfy
the Schubert condition and which do not belong to the hyperplane Hω.
This is the weight of the word ω of the Schubert code. We then denote
by d1(a0, a1, . . . , ad) the minimum weight of code words.
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Theorem 12 We have the inequality

d1(a) ≥ (qa0+1 − qa0) (qa1 − qa1−1) · · · (qad−d+1 − qad−d)

(qd+1 − 1) (qd − 1) · · · (q − 1)

where the right side is asymptotically ∼ qa0+a1+···+ad−d(d+1).

Recall that the inequality

d1(a) ≤ qa0+a1+···+ad− 1
2
d(d+1)

is known and that equality here is indeed conjectured [?]. The conjecture is
verified for d = 1 and m = 3 as follows from Example ??.

Proof. Consider the flag of vector subspaces A′
0 ⊂ A′

1 ⊂ · · · ⊂ A′
d of

dimensions dim A′
i = ai +1 in the vector space V , and for ω ∈ ∧m−dV define

η(a0, a1, . . . , ad, ω) to be the number of independent sequences of vectors
(e0, e1, . . . , ed) such that e0 ∈ A′

0, e1 ∈ A′
1, . . . , ed ∈ A′

d and such that (e0 ∧
e1 ∧ · · · ∧ ed) ∧ ω 6= 0. Then

[d + 1] n(a, ω) ≥ η(a, ω)

where [d + 1] = (qd+1 − 1) (qd+1 − q) · · · (qd+1 − qd) is the number of bases in
a fixed vector space of dimension d + 1.

In order to estimate η(a, ω) we reason by induction on d. We consider
that for a nonzero multivector ω, of arbitrary order, the number of vectors
e0 ∈ A′

0 such that e0 ∧ ω 6= 0 is ≥ qa0+1 − qa0 , cf. [?]. This implies the
statement for d = 0.

For d > 0 we now want to estimate for every admissible e0 all possible
sequences (e1, . . . , ed) modulo e0. We therefore assume that e0 ∈ A′

0, such
that e0∧ω 6= 0 is fixed. Write V = 〈e0〉⊕V̄ for some complementary subspace,
so every ei has a component ēi ∈ V̄ and every subspace in the flag is written as
A′

i = 〈e0〉 ⊕ Āi and moreover the multivector ω is written as ω = e0 ∧ ω1 + ω̄
where ω1 ∈ ∧m−d−1V̄ and ω̄ ∈ ∧m−dV̄ . Then e0 ∧ e1 ∧ · · · ∧ ed ∧ ω =
e0∧ ē1∧· · ·∧ ēd∧ ω̄ and the product is zero if and only if ē1∧· · ·∧ ēd∧ ω̄ = 0.

Consider the number η(a1 − 1, . . . , ad − 1, ω̄) of independent sequences
(ē1, . . . , ēd) in V̄ such that ē1 ∈ Ā1, . . . , ēd ∈ Ād and such that (ē1 ∧ · · · ∧
ēd)∧ω̄ 6= 0. Then using the bound quoted above for the number of admissible
vectors e0 we obtain

η(a0, a1, . . . , ad, ω) ≥ (qa0+1 − qa0) qd η(a1 − 1, . . . , ad − 1, ω̄).
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The statement for dimension d is therefore reduced to the statement for di-
mension d− 1. ?
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